
SOLVING THE N-PUZZLE USING DEEP REINFORCEMENT LEARNING

By

Dudley Spence

A DISSERTATION

Submitted to

The University of Liverpool

in partial fulfilment of the requirements

for the degree of

MASTER OF SCIENCE

15 September 2021

 Page 2 of 35

Abstract

The software discussed in the following dissertation was designed to act as an agent that

uses deep reinforcement learning to learn to play and complete the famous N-puzzle. Due to

the N-puzzle having such a significant state space with the 8-puzzle having 1013 solvable

states, simple reinforcement techniques such as value iteration would not be a viable option.

Therefore, I chose to use a Deep Q-Network, with the project’s focus being on solving the 8-

puzzle and the 15-puzzle.

The network can solve most of the 8-puzzle combinations, failing on only a small percentage

of the higher difficulty puzzles. The network can also solve some of the lower difficulty 15-

puzzles. However, the network is designed so that with enough computing power, it is fully

capable of learning to play N-puzzles of a larger scale, such as the 24-puzzle. Once trained,

the software can then take permutations of the puzzle as input and depending on the degree

of difficulty of the puzzle, will provide the user with a set of step-by-step instructions to reach

the solution.

The heuristic Manhattan distance and the instances of linear conflicts are integral parts of the

reward system used by the network during training. They reward behaviours that both solve

the puzzle and optimise the number of actions taken to reach the solution. The network uses

revolutionary training methods that are at the forefront of artificial intelligence research, such

as experience replay memory which is one of DeepMind’s most promising discoveries.

The software is coded using python and uses a training loop script that controls the interaction

between the environment, the deep q-network/agent and the experience replay memory. The

TensorFlow library is used to create the deep neural network model and allows training

parameters such as the weights to be saved and loaded. This allows the network to be

efficiently utilised for solving puzzles inputted by a user without any need to retrain the

network. Evaluation of the network was limited to the average number of puzzles solved at

each approximate starting difficulty.

 Page 3 of 35

There is no clear way to accurately calculate the optimum number of actions to solve each

puzzle; therefore, the optimality of the solutions produced by the network could not easily be

evaluated.

Since the development of the deep q-learning algorithm in 2013, there have been constant

attempts to apply the algorithm to a vast number of problems. Unlike other reinforcement

learning approaches, I was only able to find one example of the N-puzzle being solved with

a DQN and this approach gave no indication of state representation, or the reward system

used, only the network architecture. Therefore, I can presume my project is unique as the

only software that uses a DQN combined with the reward system and the environment state

representation I designed.

 Page 4 of 35

DECLARATION

I hereby certify that this dissertation constitutes my own product, that where the language of

others is set forth, quotation marks so indicate, and that appropriate credit is given where I

have used the language, ideas, expressions or writings of another.

I declare that the dissertation describes original work that has not previously been presented

for the award of any other degree of any institution.

Signed

Dudley Spence

 Page 5 of 35

List of Figures

Figure 1: Example 8-Puzzle.. 8

Figure 2: Reinforcement Learning Decision Process .. 9

Figure 3: Tensorflow Network Architecture .. 18

Figure 4: Coded Training Loop ... 19

Figure 5: In-situ Evaluation ... 20

Figure 6: Example Output of Solver Script ... 22

Figure 7: 8-Puzzle Training Evaluation - Early Stage (left) & final (right) 24

Figure 8: 15-Puzzle Final Evaluation of Training ... 25

Figure 9: Example 8-puzzle .. 34

Figure 10: Diagram showing the software structure .. 35

file://///Users/dudleyspence/Google%20Drive/Computer%20Science/MSC%20Project/Dissertation/Solving%20the%20N-Puzzle%20using%20Deep%20Reinforcement%20Learning.docx%23_Toc83310237

 Page 6 of 35

Contents

Chapter 1. Introduction .. 8

Chapter 2. Background and review of literature ... 10

Chapter 3. Software Design ... 11

 Methods and Knowledge used for the design ... 11

3.1.1. Q-Learning ... 11

3.1.2. The Deep Q-Network .. 12

3.1.3. Exploration and Exploitation.. 13

3.1.4. Experience Replay .. 13

3.1.5. Manhattan Distance and Linear Conflicts 13

3.1.6. One-Hot Encoding ... 14

 The Design ... 15

3.2.1. The environment.. 16

3.2.2. Reward System ... 16

3.2.3. The Experience Replay Buffer .. 17

3.2.4. The Deep Q-Network .. 17

3.2.5. Training Loop ... 19

3.2.6. The Puzzle Solver ... 21

 Technologies used ... 22

 Coding Standards .. 23

 Design Ethics ... 23

 Page 7 of 35

Chapter 4. The Results ... 24

Chapter 5. Future Developments .. 27

 Time and Computational Power .. 27

 Prioritised Experience Replay .. 27

 Double Deep Q-Network .. 28

 Graphical User Interface .. 28

Chapter 6. Conclusions .. 29

Bibliography .. 31

Appendix 1: Installation Guide .. 32

Appendix 2: Additional Design Detail .. 35

 Page 8 of 35

Chapter 1. Introduction

Chapter 1 first provides a brief overview of the N-puzzle and some of the different approaches

taken to reach the solution. This is then followed by an introduction to reinforcement learning

and how this approach can tackle problems like the N-puzzle.

The N-Puzzle is a sliding tile game that takes place on a k * k grid with ((k * k) – 1) tiles each

numbered from 1 to N. The goal is to slide the tiles around each other in a vertical or horizontal

direction, using the vacant position to reposition the tiles into ascending order. When referring

to the puzzle, I will discuss the 8-puzzle (figure 1) for simplicity; however, all the concepts

can be applied to any size N-puzzles.

Figure 1: Example 8-Puzzle

There are many approaches to solving the N-puzzle. The most common is heuristic functions

such as the A* search algorithm, which uses a combined heuristic using the Manhattan

distance and the hamming distance. This is usually quite effective but can take many

iterations to find a correct solution to the puzzle. Reinforcement Learning concerns how an

agent, such as the player of a game, can learn a policy (strategy) that suggests taking actions

in its environment to maximise cumulative reward. Unlike supervised learning, reinforcement

learning doesn’t require labelled data and instead relies on balancing exploration (uncharted

territory) and exploitation.

 Page 9 of 35

Figure 2: Reinforcement Learning Decision Process

Reinforcement learning has become an effective tool for solving Markov decision processes

such as the N-puzzle, a problem in which the next state and the reward can be predicted

using only the action that is taken and the information from the current state that summarise

the whole history of the environment. Attempting to solve the N-puzzle can offer a unique

insight into the potential and limits of reinforcement learning. Reinforcement learning

algorithms can start with no knowledge or ability to solve a task, and under the right

conditions, achieve performance far superior to that of a human. They can associate

immediate actions with the long-term outcomes they produce, sometimes at the expense of

immediate reward. This process of forward-thinking is vital to the development of complex

strategies, often referred to as the network policy. (Sutton and Barto, 1998)

Deep reinforcement learning combines artificial neural networks with a reinforcement

learning framework that helps software agents learn how to reach their goals. An agent is

trained without knowing the rules of the game and is told only the reward corresponding to

each state’s actions. In this project, I aimed to use a deep q-network to train an agent to solve

the N-Puzzle and then continue training to optimise the solutions produced by the agent.

The network can solve most permutations of the 8-puzzle and a smaller number of lower

difficulty 15-puzzles. With more time and computing power, there is nothing to suggest the

network would not be capable of training and successfully solving larger N-puzzles such as

the 24-puzzle.

 Page 10 of 35

Chapter 2. Background and review of literature

Chapter 2 summarises the literature that was critical for finding the correct approach to

solving the N-puzzle. Analysing previous attempts to solve the N-puzzle was a vital step in

planning the project’s design, and later provided a comparison for evaluating my own project.

This project required research on previous attempts to solve the N-puzzle and understanding

which approaches could be deemed effective. The most common approach to solving the

puzzle is using search algorithms. A* search is regarded as the most effective of these

approaches (Mathew and The Society of Digital Information and Wireless Communication,

2014). An alternative and even more effective approach is the genetic algorithms, which take

inspiration from the genetic processes seen in biology and evolution. For example,

exploration occurs via mutation, and exploitation occurs via genetic crossover of two parent

genes (Shaban, Natheer Alkallak and Mohamad Sulaiman, 2010).

When searching for methods of solving the puzzle with reinforcement learning algorithms, of

which there are few, I was able to find examples of 2 different approaches.

The work done by (Bischoff et al., 2013) used a technique known as local value iteration and

was considered effective at solving most permutations of the N-puzzle. Work by (Mehta,

2021) also used local value iteration for the 15-puzzle and found that for low difficulty games,

the loss converges and achieves a 100% win rate. The medium and high difficulty games

achieve about 43%- and 22%-win rates, respectively.

When searching for previous research into using the DQN algorithm for solving the N-puzzle,

I was only able to find one example. The work done by (Agostinelli et al., 2019) used a Deep

Q-Network labelled DeepCubeA designed to solve the Rubik’s cube but could be easily

adapted to learn to solve the N-puzzle. DeepCubeA was able to solve every test N-puzzle

and found the shortest path to the goal 99.4% of the time for the 15-puzzle and 96.98% of

the time for the 24-puzzle. It became apparent that DeepCubeA had far greater computing

power than was available to me. This allowed the training of an extensive network

architecture described as two layers with 5000 and 1000 nodes respectively, followed by four

residual blocks, each containing two more hidden layers and each with 1000 nodes.

Understanding the scale of DeepCubeA’s network architecture and training facilities was

critical for managing the balance between computing power, network size and expectation.

 Page 11 of 35

Chapter 3. Software Design

 Methods and Knowledge used for the design

This section will outline the deep reinforcement learning knowledge, methods and techniques

used in the development of the software.

3.1.1. Q-Learning

The Q-learning algorithm attempts to determine the quality (Q) of a given action from a given

state at maximising future rewards. The Q-learning agent navigates the environment

calculating Q[S, A], which is the expected reward of being in state S, and taking action A.

These Q-values are stored in a table and updated, and the Q-values will eventually converge

as the Q-function becomes more accurate. The algorithm proceeds in discreet rounds.

In every round, t,

• An action is chosen greedily using the “estimated” Q-values

𝒂𝒕 = 𝒂𝒓𝒈𝒎𝒂𝒙𝒂𝑸(𝒔𝒕, 𝒂)

• Action 𝒂𝒕 is taken giving an observed reward 𝒓𝒕, next state 𝒔𝒕+𝟏

• Update Q-values for 𝒔𝒕, 𝒂𝒕

𝑸(𝒔𝒕, 𝒂𝒕) = 𝑸(𝒔𝒕, 𝒂𝒕) + 𝜶[𝑹 + 𝜸 𝒎𝒂𝒙𝒂𝑸(𝒔𝒕+𝟏, 𝒂) − 𝑸(𝒔𝒕, 𝒂𝒕)]

The discount factor , essentially determines how much emphasis the agent puts on rewards

in the future relative to the rewards in the immediate future. If equals zero, the agent is

short-sighted and only learns about actions that produce an immediate reward.

If equals one, the agent evaluates each of its actions based on the sum of all its future

rewards, which leads to decisions being made factoring in potentially irrelevant information

too far in the future.

The learning rate determines to what extent newly acquired information overwrites old

information.

 Page 12 of 35

3.1.2. The Deep Q-Network

The DQN (Deep Q-Network) algorithm was designed by DeepMind in 2013 with the

development of a DQN capable of playing several Atari games to a superhuman ability (Mnih

et al., 2013). The algorithm is an enhancement of the RL algorithm Q-Learning with a deep

neural network.

To tackle problems such as the N-puzzle where the state space is far too large to store Q-

values in a table, the Q-function must instead be approximated. This function approximation

is made using a deep neural network. The state is used as input and is forward propagated.

The network outputs the Q[S, A] values for all the possible actions. Like a regular neural

network, the algorithm requires a loss function.

The loss function is the mean squared error of the target Q-values, calculated using the

Bellman equation, minus the predicted Q-Value. Unlike in other deep learning methods where

the target value is static and does not change, in reinforcement learning, the target does

change and is regularly calculated. To regularly generate the target values, two versions of

the network are used. One network is the function approximator called the policy network,

and the other is the target network and has the same network architecture as the policy

network but with frozen parameters.

Every k iterations, where k is a user-defined value, the network parameters of the policy

network are copied to the target network.

𝑳𝒐𝒔𝒔 = [𝒓 + 𝜸 𝒎𝒂𝒙𝒂′𝑸(𝒔′, 𝒂′; 𝜽𝒊
−𝟏) − 𝑸(𝒔, 𝒂; 𝜽𝒊)]

𝟐

𝑳𝒐𝒔𝒔 = (𝑻𝒂𝒓𝒈𝒆𝒕 𝒗𝒂𝒍𝒖𝒆 − 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒗𝒂𝒍𝒖𝒆)𝟐

For every input, the state S is provided to the policy network, and the next state S’ is provided

to the target network. For the target network, the maximum Q-value is always chosen for the

loss function and for the policy network, the Q-value is chosen that corresponds to the action

chosen using the -greedy policy. Now that we have the loss function (shown above), the

optimisation problem is the same as minimising the error function in any other neural network,

through backpropagation.

 Page 13 of 35

3.1.3. Exploration and Exploitation

If the agent was to choose its actions based solely on the policy, it would never learn any

complex strategies and would make all its actions based on only the immediate reward. This

usually results in the agent selecting the same move repeatedly.

To avoid this premature convergence to a weak strategy, randomness must be introduced to

allow the agent to explore the environment in order to develop a more complex strategy that

considers the longer-term rewards associated with some actions. This process is called an

-greedy policy. Epsilon is a user-defined probability of selecting a random action

(exploration) rather than using the policy to select the action (exploitation).

3.1.4. Experience Replay

As humans, our best decisions aren’t based only on the new experiences we have had, and

instead are based on a combination of new and old experiences stored as episodic memories

that can be learned from. For example, when learning to play a game such as tic-tac-toe, if a

player loses, the strategy used for the following game should not be based solely on the

previous game. Instead, the player should try to play a strategy that is a culmination of the

experiences of all the games they have played. Similarly, for the DQN agent, experience

replay acts as a data generating process, collecting experiences to learn from and storing

them in a replay memory buffer of fixed size.

These experiences are stored as tuples containing < S, A, S’, R, D> state, action, next-state,

reward and done, where done is a Boolean value holding True if the experience resulted in

the terminal state. These experiences slowly fill the replay memory buffer with the newest

pushing out the oldest.

Each epoch, the agent samples a random batch of experiences and uses the batch as the

training sample data. This random sampling avoids using data that is too correlated such as

sequential experiences. (Fedus et al., 2020)

3.1.5. Manhattan Distance and Linear Conflicts

The Manhattan distance (or the taxi-cab distance) is a heuristic value meaning it tells the

algorithm which path will provide the solution as early as possible. The heuristic function for

 Page 14 of 35

Manhattan distance is computed by counting the number of moves along the grid that each

tile is displaced from its goal position and summing these values over all tiles (excluding the

vacant tile 0). This gives a rough estimate of the number of moves from the goal state.

Mathematically, if the position of the tile is 𝑥 = (𝑎, 𝑏) and the position of the same tile in the

terminal state is 𝑦 = (𝑐, 𝑑) then

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 = |𝒂 − 𝒄| + |𝒃 − 𝒅|

One of the drawbacks of relying on the Manhattan distance as an estimate of cost is its lack

of consideration of linear conflicts in the board. Two tiles ’a’ and ‘b’ are in a linear conflict if

they are in the same row or column, their goal positions are in the same row or column, and

the goal position of one of the tiles is blocked by the other tile in that row.

When linear conflicts occur, one tile must move out the way to allow the other to pass and

then move back again. Therefore, for every linear conflict in the state, two is added to the

distance value of the board.

3.1.6. One-Hot Encoding

When approaching a problem with machine learning, understanding what type of data is

being used is critical for successful network predictions. Most input data will either be

categorical or numerical. When considering the N-puzzle, it is important to remember that the

numbers on each tile are simply labels and the value of the number has no relation to the tile

it is on. Therefore, the N-puzzle input data can be considered categorical data rather than

numerical data.

There are two methods for pre-processing categorical data, which are integer encoding and

one-hot encoding. Integer encoding only works when the categories follow a natural order,

such as small=1, medium=2, and large=3 meaning medium and large (2 and 3) can be

considered more similar than small and large (1 and 3). However, when the categories don’t

follow a natural order, such as in a classification problem where blue=1, green=2 and

yellow=3, if we inputted a yellow tile, then the network would assume a natural order and

consider a classification of green to be more correct than blue when in fact both are equally

incorrect.

 Page 15 of 35

Similar to the colours, there are many versions of the N-puzzle that have no numbers on the

tiles and instead have image segments, with the goal being to produce the original image.

Therefore, to avoid the data being treated as being integer encoded by the network, the data

must be pre-processed using one-hot encoding.

One-hot encoding converts the categories into a binary format. Looking at the 1-D state

format there are 8 tiles and one vacant position. Each tile will be represented by an array of

length 8 made up of zeros and ones where the position of the one identifies the tile. For

example [0, 1, 2, 3, 4, 5, 6, 7, 8] would first be represented as:

[[0, 0, 0, 0, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0]

[0, 0, 0, 0, 0, 1, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 0]

[0, 0, 0, 0, 0, 0, 0, 1]]

Prior to being inputted to the network, this would then be reshaped into a one-dimensional

array of shape (1, 72) or, for this example:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1].

 The Design

The software design can be separated into two, the training software and the front-end

software. The training part of the software consists of four main elements, the environment,

the DQN, the replay buffer, and the training loop. The front end of the software consists of a

puzzle-solving script that uses the trained network to solve requested puzzles. In this section,

I will be discussing how each aspect of the software was designed and developed.

 Page 16 of 35

3.2.1. The environment

The environment script is responsible for generating new starting states, maintaining the

current state, applying actions to the current state and calculating the reward of a Q(s, a).

When formulating a DQN, our unique contribution is in choosing the reward structure and

state representation.

How can a 2-dimensional puzzle board be represented in code? This was one of the first

questions that were asked when designing the software. The environment is represented as

a 1-dimensional array of numbers ranging from zero to N, where 0 represents the vacant

position on the puzzle board. For example, for an 8-puzzle, the solved state would be [0, 1,

2, 3, 4, 5, 6, 7, 8].

How can starting puzzles be generated that are the desired difficulty and always be solvable?

Each puzzle state has a property distance which is computed as a combination of the

Manhattan distance and the linear conflicts. When generating starting puzzles, random

actions are taken until the distance of the board is greater than the user-defined parameter,

difficulty. The puzzle is generated by working backwards from the goal state to prevent any

puzzles from being generated that are not solvable. Depending on the selected action, a tile

swaps index position with the vacant tile 0.

3.2.2. Reward System

When an action is taken, the reward of the resulting state is calculated and provided to the

DQN. Initially, the reward system used was simply -9 and then +1 for every tile that is in its

final position. However, this was reward system was ineffective, likely due to the constant

requirement to move tiles out of their terminal position in order to increase the overall number

of tiles in their terminal position.

The reward system needed to give a better estimate of the cost of the current state, and so

heuristic functions were the most logical solution. I instead introduced the heuristic Manhattan

distance as the reward system. After each action, the reward for the transition would be the

negated Manhattan distance with an additional -1 for any actions that would not be possible

on the physical board and result in the state remaining the same such as moving in the

direction of the edge of the puzzle. This was effective for training puzzles of low difficulty;

 Page 17 of 35

however, once the difficulty reached ~10+, the training plateaued, and the agent was unable

to solve the puzzles. This was likely due to the introduction of linear conflicts in the puzzles

when the difficulty surpasses 10. Therefore, my final reward system also introduced an

additional -2 for each linear conflict in a state. This showed immediate results and the training

continued past difficulty 10.

3.2.3. The Experience Replay Buffer

The replay buffer is responsible for storing new experiences into the replay memory that has

a user-defined capacity and will push old experiences out for new ones when the memory

reaches maximum capacity. The second function of the replay memory is selecting a random

batch of experiences from the buffer and pre-processing them for input to the DQN.

Initially, the replay buffer memory could hold 5000 experiences. During the training process,

the agent would occasionally be making progress until suddenly it lost all the progress it was

making as if it had forgotten what it had learned. This was due to a phenomenon known as

catastrophic forgetfulness.

Catastrophic forgetfulness occurs when the size of the replay buffer memory is not large

enough, and so the older experiences are frequently pushed out of the buffer (forgotten) by

new experiences collected by the agent. Occasionally, experiences that were vital for learning

a complex strategy will be forgotten, and the progress made by the agent will go backwards.

This phenomenon restricts the agent to a cycle of learning simple strategies that are then

forgotten and relearned.

This problem was immediately mitigated by increasing the buffer size from 5000 to 100,000

and maintaining a batch size of 100.

3.2.4. The Deep Q-Network

The DQN class has many user-defined hyperparameters; each can be altered for

optimisation of the network and can adapt the network to learn to solve different puzzle sizes.

Both the policy network and the target network have identical network architectures (figure

3).

 Page 18 of 35

Figure 3: Tensorflow Network Architecture

The network has an input layer of N+1 nodes and three dense hidden layers, each with 250

nodes and finally an output layer of 4 nodes. This is a small network in comparison to the

DeepCubeA network previously discussed.

The design of the network involved balancing both being large enough that it can handle

more complex learning but also a small enough network that allows for extensive training of

the network given the time and computing power available.

During the network design, several different activation functions were tested, and the Relu

function consistently produced the best results. The DQN involved a pre-processing function

capable of converting the 1-D input array to a one-hot encoded N(N+1) array made up of only

zeros and ones.

The training function of the DQN takes a sample batch of experiences as input and forward

propagates the current states to the policy network and the next states to the target network.

The loss is then calculated using the mean squared error function, and the policy network

weights are updated using the TensorFlow Adam-optimization gradient decent.

When required, the target network parameters can be updated to match the policy network

parameters. The discount factor is 0.9, meaning the network will consider the reward of

actions several steps ahead.

 Page 19 of 35

3.2.5. Training Loop

The training loop follows the algorithm seen immediately below, followed by the coded

version, figure 4, beneath that.

1. Initialise the replay memory (100,000 capacity)

2. Create an instance of the agent class

3. Create an instance of the environment class

4. For each episode:

1. Generate a new starting state

2. For each timestep:

1. Select an action using exploration or exploitation.

2. Execute the selected action in the environment.

3. Observe the reward and next state

4. Store this experience as a tuple in the replay memory. < S, A, S', R, D>.

5. Sample a random batch from the replay memory.

6. Pre-process the states from the batch.

7. Pass the batch of states to the policy network.

8. Calculate the loss between the output Q-values and the target Q-values

 This requires a second forward pass to the network using the next state

9. Gradient descent updates weights in the policy network to minimise loss.

10. Every ten timesteps, the target network is updated to the policy network

Figure 4: Coded Training Loop

 Page 20 of 35

The software will complete 100 iterations of the loop without batch sampling to allow the

replay buffer to fill with enough experiences for the first sample batch. Initially, when

designing the software, the epsilon value was fixed at 0.3. However, it became apparent that

for the agent to quickly learn the rules of the game and explore strategies, this value needs

to be higher for the initial iterations.

The epsilon value for the -greedy policy starts at 0.9, but for every iteration, the epsilon

value decreases by a factor of 0.999. This -decay allows for greater exploration of the state

space at the start of the training process and greater exploitation of the policy once training

has progressed and is closer to a maximum in the state space (Thrun, 1992). Every ten

timesteps within an epoch, the parameters of the policy network are copied to the target

network.

Due to lack of computing power, the training process is slow and so having an in-situ training

evaluation is vital for making small alterations to the network to optimise training speed and

quality.

The in-situ evaluation (figure 5) is produced by providing the agent with ten puzzles and using

only the policy network; the agent must attempt to solve the puzzles each in under 50 moves.

Figure 5: In-situ Evaluation

For more difficult puzzle sizes and puzzle difficulties, training could occur for a long period of

time before any puzzles were solved. This means, using only the total number of solved

puzzles, it would not be clear if the training is making progress. Therefore, it is important to

include the variable ‘average final distance’, which gives the difficulty of the resulting puzzle

state when all moves have been taken. This gives a gauge of how close the puzzles are to

the solved solution.

 Page 21 of 35

Each evaluation also gives a percentage ‘just solved’ of the 10 attempted puzzles. The

training process was accelerated by starting on lower difficulty puzzles and only increasing

the puzzle difficulty once three consecutive evaluations have been completed with a ‘just

solved’ rate of greater than 80%.

3.2.6. The Puzzle Solver

The puzzle solver script is the front end of the software that allows a user to input a puzzle in

the form of a number of length N+1. The software creates an instance of the policy network

and imports the latest saved network parameters. The user-defined puzzle state is then first

checked for solvability. If the puzzle is deemed solvable is inputted to the policy network.

The policy network then has 50 actions to solve the puzzle. If the puzzle is solved in under

50 moves, the step-by-step solution will be printed for the user, with each step being

displayed as a 2-dimensional array. If the solution is solvable, the function only needs to

perform sequential forward propagations from the starting state until the terminal state is

reached or 50 actions have been taken.

The complexity of this solving function is introduced when processing the input state to check

if it is solvable. The first step is to find the number of inversions that are in the starting state.

An inversion is found by representing the board as a 1-dimensional array. Two tiles (a, b)

form an inversion if a comes before b but a > b, ignoring 0 as it represents a vacant position.

For example, in the array [0, 2, 1, 3, 4, 5, 6, 7, 8], there is one inversion (2, 1). The following

rules can be used to determine if the puzzle state is solvable.

1. If N is odd, then the puzzle instance is solvable if the number of inversions is even.

2. If N is even, the puzzle instance is solvable if

• The vacant position is on an even row counting from the bottom (e.g. second last),

and the number of inversions is odd.

• The vacant position is on an odd row counting from the bottom, and the number of

inversions is even.

3. For all other cases, the puzzle instance is not solvable.

 Page 22 of 35

For example, a puzzle has been inputted to the software, which has determined it to be

solvable and have a difficulty of 17. The solution is then provided to the user in the format

seen in figure 6 below.

Figure 6: Example Output of Solver Script

 Technologies used

This software was written using object-oriented programming in the python programming

language in the PyCharm IDE. I used several additional python libraries such as Tensorflow,

Keras and Matplotlib.

Tensorflow is needed to build the neural network framework required for the deep

reinforcement learning algorithm. TensorFlow provides the necessary tools for building

complex and powerful neural networks while avoiding the need for direct coding of the fine

details of the deep learning process.

Matplotlib is used for creating data visualisations in python, such as the graphs produced by

the network evaluation script.

The training of the neural network was performed using a Macbook Pro (16”, 2019) with a

2.6GHz 6-Core Intel Core i7 processor and 16GB of RAM. As previously mentioned, this

processing power is negligible in comparison to that of DeepCubeA who sought to train a

similar network.

In an attempt to improve computational power, I experimented with training the DQN using

AWS cloud computing. During the training optimisation process, the network was trained on

 Page 23 of 35

AWS virtual machine with 9 vCPU; however, this proved to be not enough as training speed

increases were negligible. Unfortunately, the acquisition of virtual machines with GPU

capabilities is not free.

 Coding Standards

Throughout the development on the software, I made sure to maintain certain coding

standards, using the PEP8 coding standard as an informal reference. For example, all class

names follow the CapsWords convention but all function names and variables are lowercase

with underscores between words.

Each of the function and classes are summarised using a doctoring that states the

parameters involved and the outputs of the function. When reading unfamiliar code, simplicity

is critical to aiding the understanding. For that reason, I have tried to keep functions simple

where possible and use relevant variable names. The lack of code repetition shows efficiency

in the code and makes following the code an easier process.

 Design Ethics

For this reinforcement learning algorithm, large amounts of state data are required. In the

case of the N-puzzle, there are so many states that finding a dataset containing all the states

would be impossible. Often for puzzles such as the N-puzzle, the state data can be self-

generated by the agent. Therefore, the lack of use of human data voids any requirement for

ethical approval.

 Page 24 of 35

Chapter 4. The Results

For this section, I will be evaluating the networks’ ability to solve puzzles of different difficulties

to understand the effectiveness of the network training process.

The last part of the software is the network evaluation script. To evaluate the progress of

training, the software iterates through each difficulty and generates 100 puzzles.

For the 8-puzzle, there are 22 difficulties, and for the 15-puzzle, there are 56 difficulties. The

agent is given 50 moves to solve each puzzle. The graphs show the percentage of the 100

puzzles solved at each of the difficulties. This gives a strong indication of the training

progress; however, the difficulty is based on an estimate of the number of moves from the

goal state and so is not a fully accurate variable.

In the graphs below, figure 7, show the evaluations at different stages in the training process.

Figure 7: 8-Puzzle Training Evaluation - Early Stage (left) & final (right)

Focusing on the final graph for the 8-puzzle shown on the right of figure 7, the DQN can solve

puzzles of difficulties up to and including 11 100% of the time. This % rate of solving then

decreases down to 80% by difficulty 18.

 Page 25 of 35

Figure 8: 15-Puzzle Final Evaluation of Training

For the 15-puzzle, figure 8, the DQN was able to solve 90-100% of the puzzles up to a

difficulty of 18, then drops to 10% for boards of difficulty 20.

Computational power is the main limiting resource when training the DQN both to train a

larger network but also when generating starting puzzles. As the agent learns and trains more

difficult puzzles, the time taken to generate the puzzles greatly increases. For example, it can

take up to 500 random actions to generate a 15-puzzle of difficulty 30.

During training, it was apparent that despite having 50 moves to solve the puzzle, none of

the puzzles took 40-50 moves to solve. This showed that regardless of the number of actions

taken by the agent, the policy would produce polar outcomes meaning the agent could either

solve the puzzle or it couldn’t. This is because for each forward propagation, the current state

is provided to the network which uses the policy as its strategy to determine which action to

take. Occasionally, due to incomplete training, when the network forward propagates a state,

the action suggested by the network is the reverse of the action suggested when the network

forward propagates the next state. This means the network will go back and forth thinking the

most optimum move is to go back one move then forward again. During training, this cycle

cannot last due to the epsilon value encouraging occasional exploration and therefore the

eventual discovery of a correct strategy. During the evaluation however, the network only

uses exploitation of the policy meaning for some states, an unrefined policy can lead to this

looping affect.

 Page 26 of 35

Unfortunately, there is no simple way to calculate the optimum number of moves required to

solve each puzzle, and so the optimality of the solutions calculated by the DQN cannot be

properly evaluated. For every one of the 8-puzzles, each puzzle can be solved in 30 moves

or less, with only two puzzles requiring 30 moves to reach a solution. The DQN can solve

both of the most difficult puzzles, one in 33 moves and one in 39 moves.

 Page 27 of 35

Chapter 5. Future Developments

This section sets out some of the potential enhancements that could be developed in future

iterations of the software.

 Time and Computational Power

The key limitation of training the current network is computational power. With more time, I

would intend on training the DQN to be able to solve every 8-puzzle and most of the 15-

puzzles. This would only be possible by either training the DQN on a more powerful computer

and for a longer period or making changes to the DQN that increase the training efficiency.

For example, the DeepCubeA network (Agostinelli et al., 2019) trained for 1 million iterations

on two NVIDIA Titan V GPUs, with six other GPUs used in parallel for data generation. In

total, the DNN saw 10 billion examples during training. The training was completed in 36

hours. As the only other example of a DQN being used for the N-puzzle, this is a huge

difference in computing power to that of the facilities I have access to and shows the

importance of such power for achieving the results of DeepCubeA.

With the right facilities to train my software, I would ideally run a separate computer solely for

generating the puzzle state data and the other for training the generated data. With a network

that trains faster, restrictions on the size of the network and the learning rate can be reduced

to produce a more complex and efficient network.

 Prioritised Experience Replay

One potential change that I would introduce is the inclusion of prioritised experience replay.

Currently, the DQN uses uniform experience replay, meaning experience transitions are

uniformly sampled from the replay memory.

When humans learn, we don’t give equal significance to our memories; instead, we prioritise

the memories that held the most significance to the task we are trying to learn. This process

of prioritising experiences was applied to the DQN algorithm by DeepMind, meaning more

important memories were replayed more frequently, allowing more efficient learning.

 Page 28 of 35

When comparing DQNs used to play Atari games, the network using prioritised experience

replay outperformed the network using uniform experience replay in 41 out of 49 games

(Schaul et al., 2016).

 Double Deep Q-Network

The classic DQN network has been shown to often suffer from a substantial overestimation

of action values when under some conditions. A new double deep q-learning algorithm has

since been developed and has been shown to greatly reduce most of the overestimation.

This new algorithm can lead to far greater performance for some learning tasks (van Hasselt,

Guez and Silver, 2015). I would be interested to see what effect implementing this algorithm

has on the puzzle solving capabilities of the DQN.

 Graphical User Interface

While the solver.py script is effective as a front end for the software and can provide step-by-

step solutions to the puzzles, the interface is extremely simplistic. With more time, I would

use the TKInter python library to construct a user-friendly interface where tiles are dragged

and dropped into their position on an empty board for input. The step-by-step transitions

would be animated and could be easily moved through using the forward and backward arrow

keys.

 Page 29 of 35

Chapter 6. Conclusions

In summary, I have created a Deep Q-Network that is capable of being trained to solve the

N-Puzzle. The network uses an -greedy policy to promote both exploration of the

environment and exploitation. The input state data is one-hot encoded and the network

outputs action value estimates. Training follows the deep q-learning algorithm and uses

experience replay to store experiences and then train from sample batches in order to reduce

the short-sighted effect of using correlated data. The DQN used a reward system based on

the combination of the Manhattan distance heuristic and the number of linear conflicts. The

training parameters are saved and can be reloaded into the network allowing training to

continue from a checkpoint. The software uses a python script called Puzzle_Solver.py to

ask users for a puzzle state and attempt to solve the puzzle using the trained network. If

successful, the script will provide the user with step-by-step instructions on how to solve it.

The only part of the project plan I was unable to attempt due to restrictions on time was the

development of a graphical user interface. If I was to extend the project for further

development, I would create a GUI that would interact with the Puzzle_Solver.py script to

provide an enjoyable user experience when finding solutions to combinations of the N-puzzle.

The network was trained on both the 8-puzzle and the 15-puzzle and showed promising

results. Most of the 8-puzzles could be solved even up to the highest difficulty and many of

the 15-puzzles could be solved but only the lower difficulty puzzles. Despite the agent being

limited to solving low difficulty 15-puzzles this is by no means a failure and is simply the result

of not having the computing resources available to push training further. With most methods

of solving the N-puzzle if the solution cannot be found in a set number of actions, then

increasing the number of actions can result in a solution that is just not very optimum. Training

results showed that for the DQN if a puzzle cannot be solved, allowing more actions to solve

the puzzle will not affect the outcome, as the policy used by the network is fixed.

Taking into consideration the lack of computational power available, I think relative to a huge

network like DeepCubeA, my DQN produced far better results than I expected. I hope to

continue the network training via a subscription to an AWS virtual machine and am also

interested to see what changes the introduction of prioritised experience replay will make to

the network’s capabilities.

 Page 30 of 35

The reward system I designed and the method of representing the state and implementing

the actions has not been done before when using a DQN to solve the N-puzzle making my

project rather unique. This has made the project even more exciting and I look forward to

seeing further developments in the field of deep reinforcement learning that enable more

efficient training and more effective learning.

 Page 31 of 35

Bibliography

Agostinelli, F. et al. (2019) ‘Solving the Rubik’s cube with deep reinforcement learning and
search’, Nature Machine Intelligence, 1(8), pp. 356–363. doi:10.1038/s42256-019-0070-z.

Bischoff, B. et al. (2013) ‘Solving the 15-Puzzle Game Using Local Value-Iteration’, p. 13.

Fedus, W. et al. (2020) ‘Revisiting Fundamentals of Experience Replay’, arXiv:2007.06700
[cs, stat] [Preprint]. Available at: http://arxiv.org/abs/2007.06700 (Accessed: 24 August
2021).

van Hasselt, H., Guez, A. and Silver, D. (2015) ‘Deep Reinforcement Learning with Double
Q-learning’, arXiv:1509.06461 [cs] [Preprint]. Available at: http://arxiv.org/abs/1509.06461
(Accessed: 13 September 2021).

Mathew, K. and The Society of Digital Information and Wireless Communication (2014)
‘EXPERIMENTAL COMPARISON OF UNINFORMED AND HEURISTIC AI ALGORITHMS
FOR N PUZZLE AND 8 QUEEN PUZZLE SOLUTION’, International Journal of Digital
Information and Wireless Communications, 4(1), pp. 143–154. doi:10.17781/P001092.

Mehta, A. (2021) ‘Reinforcement Learning For Constraint Satisfaction Game Agents (15-
Puzzle, Minesweeper, 2048, and Sudoku)’, p. 19.

Mnih, V. et al. (2013) ‘Playing Atari with Deep Reinforcement Learning’, arXiv:1312.5602 [cs]
[Preprint]. Available at: http://arxiv.org/abs/1312.5602 (Accessed: 7 September 2021).

Schaul, T. et al. (2016) ‘Prioritized Experience Replay’, arXiv:1511.05952 [cs] [Preprint].
Available at: http://arxiv.org/abs/1511.05952 (Accessed: 13 September 2021).

Shaban, R., Natheer Alkallak, I. and Mohamad Sulaiman, M. (2010) ‘Genetic Algorithm to
Solve Sliding Tile 8-Puzzle Problem’, JOURNAL OF EDUCATION AND SCIENCE, 23(3), pp.
145–157. doi:10.33899/edusj.2010.58405.

Sutton, R.S. and Barto, A.G. (1998) Reinforcement learning: an introduction. Cambridge,
Mass: MIT Press (Adaptive computation and machine learning).

Thrun, S.B. (1992) Efficient Exploration In Reinforcement Learning. USA: Carnegie Mellon
University.

 Page 32 of 35

Appendix 1: Installation Guide

The project package contains a text file six python scripts and two folders containing the

pretrained network parameters for the 8-Puzzle and the 15-Puzzle:

• README.txt

• Training_Loop.py

• Environment.py

• DQNAgent.py

• Evaluate.py

• Puzzle_Solver.py

• Folder: training_8_puzzle_250_nodes

• Folder: training_15_puzzle_500_nodes

Preliminary Installation Commands:

pip install tensorflow

pip install keras

pip install tqdm

pip install matplotlib

pip install numpy

pip install collections

pip install python

Training Guide:

• “N” is the puzzle size you are wanting to train on so for the 8-puzzle, N=8. Difficulty is

an estimate of the optimum number of moves taken to solve the puzzles the agent will

be using for training.

• A lower difficulty parameter will result in faster training as the puzzles are easier but

also much faster to generate. Bear in mind if the difficulty is set higher than the

maximum difficulty for that puzzle the puzzle boards will never be generated, and

training won’t progress.

 Page 33 of 35

• There are already pre-trained saves included in the software, one for the 8-Puzzle and

one for the 15-puzzle should you wish to use the pre-trained networks and continue

the training.

• To begin training: open the command prompt and run the command…

python Training_Loop.py

• From there, you will be asked to input the N value for the puzzles you would like to

train using. For example, for the 8-puzzle, you should input 8.

• You will be then asked to provide a training difficulty. The difficulty should not be set

higher than 21 for the 8-puzzle and 50 for the 15-puzzle. I would advise a training

difficulty of 15 for the 8-puzzle.

• Finally, you will be asked if you wish to restart training or continue from the last training

checkpoint. You must type any of “yes”, “no”, “y” or “n”. If you select yes to restart

training, all previous training data for that puzzle size will be deleted.

• The training should then begin and will automatically save the network parameters for

future use.

• The first time the network is trained, I would advise not interrupting training until -

decay has finished and the epsilon value, stated in the in-situ evaluations, has reached

the final epsilon value (default is 0.3).

To make changes to the other hyper-parameters of the DQN, open the

Training_Loop.py file, and at the bottom of the script, choose the desired network

hyper-parameters.

Network Evaluation Guide:

• To evaluate the network training, simply run the command…

python Evaluate.py

• Input the size N of the puzzle you would like the network to use for evaluation.

 Page 34 of 35

Guide to solving puzzles with your trained network:

• Firstly, you will need to convert the puzzle you wish to solve into the correct format.

• Figure 8 shows an example 8-puzzle that can be written as a list of length N., e.g.

figure 8 = 123456780

• Once you have converted your puzzle into the correct format. On the command line,

run the command…

python Puzzle_Solver.py

• Then type in the reformatted puzzle and press enter to begin attempting to solve the

puzzle.

Figure 9: Example 8-puzzle

 Page 35 of 35

Appendix 2: Additional Design Detail

Figure 10: Diagram showing the software structure

	Abstract
	DECLARATION
	List of Figures
	Contents
	Chapter 1. Introduction
	Chapter 2. Background and review of literature
	Chapter 3. Software Design
	3.1. Methods and Knowledge used for the design
	3.1.1. Q-Learning
	3.1.2. The Deep Q-Network
	3.1.3. Exploration and Exploitation
	3.1.4. Experience Replay
	3.1.5. Manhattan Distance and Linear Conflicts
	3.1.6. One-Hot Encoding

	3.2. The Design
	3.2.1. The environment
	3.2.2. Reward System
	3.2.3. The Experience Replay Buffer
	3.2.4. The Deep Q-Network
	3.2.5. Training Loop
	3.2.6. The Puzzle Solver

	3.3. Technologies used
	3.4. Coding Standards
	3.5. Design Ethics

	Chapter 4. The Results
	Chapter 5. Future Developments
	5.1. Time and Computational Power
	5.2. Prioritised Experience Replay
	5.3. Double Deep Q-Network
	5.4. Graphical User Interface

	Chapter 6. Conclusions
	Bibliography
	Appendix 1: Installation Guide
	Appendix 2: Additional Design Detail

